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A New Spherical Bessel Function Result Related
to Quantum Mechanical Scattering Theory

H. M. Srivastava1,3 and H. A. Mavromatis2

The authors present a derivative formula for the square of a spherical Bessel function in
terms of the spherical Bessel function of twice the argument. This derivative formula is
then applied in an inversion problem for the partial-wave Born approximation in quan-
tum mechanical scattering theory. Several other closely related results and derivative
formulas are also considered.

KEY WORDS: Bessel and spherical Bessel functions; derivative formulas; inverse
scattering problem; partial-wave Born approximation; generalized hypergeometric func-
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For the Bessel functionJν(z) of the first kind of orderν, defined by

Jν(z) :=
∞∑

k=0

(−1)k
(

1
2z
)ν+2k

k! 0(ν + k+ 1)
(1)

(|arg(z)|%π − ε (0 < ε < π ); ν ∈ C)

or, equivalently, by

Jν(z) :=
(

1
2z
)ν

0(ν + 1)
0F1

(
−; ν + 1;−1

4
z2

)
(2)

(|arg(z)|%π − ε (0 < ε < π ); ν ∈ C),

wherepFq denotes a generalized hypergeometric function withp numerator andq
denominator parameters, each of the following derivative formulas is well-known
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(rather classical) (Watson, 1994, p. 46, Equations 3.2 (5) and 3.2 (6)):(
1

z

d

dz

)m

{zν Jν(z)} = zν−mJν−m(z) (3)

and (
1

z

d

dz

)m

{z−ν Jν(z)} = (−1)m z−ν−mJν+m(z), (4)

where

m ∈ N0 := N ∪ {0} N := {1, 2, 3,. . .}.
Motivated essentially by its application in an inversion problem for the partial-

wave Born approximation in quantum mechanical scattering theory, we aim here at
presenting a (presumably new) derivative formula involving thesphericalBessel
function jn(z) of the first kind, defined by Abramowitz and Stegun (p. 437)

jn(z) :=
√
π

2z
Jn+ 1

2
(z) n ∈ Z := {0,±1,±2, . . .} (5)

with the following derivative representation (Abramowitz and Stegun, p. 439, Entry
10.1.25):

jl (z) = zl

(
−1

z

d

dz

)l {sinz

z

}
l ∈ N0. (6)

We begin by recalling the familiar expansion formula (Watson, p. 147, Equa-
tion 5.4 (5)) (see also Gradshteyn and Ryzhik, p. 960, Entry 8.442.1):

Jµ(z)Jν(z) =
∞∑

k=0

(−1)k
(

1
2z
)µ+ν+2k

0(µ+ ν + 2k+ 1)

k! 0(µ+ k+ 1)0(ν + k+ 1)0(µ+ ν + k+ 1)
. (7)

Upon multiplying each member of (7) byzλ, if we differentiate both sides of the
resulting equation, firstl times with respect toz2 and then once with respect toz,
we find from (7) that

d

dz

(
d

dz2

)l

{zλJµ(z)Jν(z)}

= zλ+µ+ν−2l−10
[

1
2(λ+ µ+ ν)+ 1

]
2µ+ν−10(µ+ 1)0(ν + 1)0

[
1
2(λ+ µ+ ν)− l

]
· 3F4

 1
2(µ+ ν + 1), 1

2(µ+ ν)+ 1, 1
2(λ+ µ+ ν)+ 1;

−z2

µ+ 1, ν + 1,µ+ ν + 1, 1
2(λ+ µ+ ν)− l ;

 , (8)
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which, forλ = µ+ ν, immediately yields

d

dz

(
d

dz2

)l

{zµ+ν Jµ(z)Jν(z)}

= z2(µ+ν−l )

2µ+ν−10(µ+ 1)0(ν + 1)0(µ+ ν − l )

· 2F3


1
2(µ+ ν + 1), 1

2(µ+ ν)+ 1;

−z2

µ+ 1, ν + 1,µ+ ν − l ;

 , (9)

it being understoodthroughout the present investigationthat

d

dz2
= 1

2z

d

dz
.

In its further special case whenµ = ν, the derivative formula (9) would
reduce to the form:

d

dz

(
d

dz2

)l

{z2ν [ Jν(z)]2}

= 2z2(2ν−l )−10
(
ν + 1

2

)
√
π0(ν + 1)0(2ν − l )

1F2

(
ν + 1

2
; ν + 1, 2ν − l ;−z2

)
. (10)

Finally, in terms of the spherical Bessel function defined by (5), we find from
(10)with ν = l + 1

2(l ∈ N0) that

d

dz

(
d

dz2

)l {
z2l+1

[
Jl+ 1

2
(z)
]2} = 2zl+ 1

2√
π

Jl+ 1
2
(2z), (11)

that is, that

d

dz

(
d

dz2

)l

{[zl+1 jl (z)]2} = 2zl+1 jl (2z). (12)

By appealing to the classical results (3) and (4) in theirequivalentforms:(
1

z

d

dz

)m

{zn+1 jn(z)} = zn−m+1 jn−m(z) (13)

and

(−1)m
(

1

z

d

dz

)m

{z−n jn(z)} = z−n−m jn+m(z), (14)
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respectively, (12) would yield the following additional derivative formulas:

jl−m(2z) = 1

2zl−m+1

(
d

dz2

)m d

dz

(
d

dz2

)l

{[zl+1 jl (z)]2} (15)

and

jl+m(2z) = (−1)m
zl+m

2

(
d

dz2

)m 1

z2l+1

d

dz

(
d

dz2

)l

{[zl+1 jl (z)]2}. (16)

In their special case whenm= l , these last results (14) and (15) reduce to the
forms:

j0(2z) = 1

2z

(
d

dz2

)l d

dz2

(
d

dz2

)l

{[zl+1 jl (z)]2} (17)

and

j2l (2z) = (−1)l
z2l

2

(
d

dz2

)l 1

z2l+1

d

dz

(
d

dz2

)
{[zl+1 jl (z)]2}, (18)

respectively.
In view of the casel = 0 of the derivative representation in (6), (17) is the

same as the known result (cf. Mavromatis and Al-Jalal, 1990, p. 1182, Equation
(5); see also Al-Ruwaili and Mavromatis, 1996, p. 2207, Equation (3)):

sin 2z=
(

d

dz2

)l d

dz

(
d

dz2

)l

{[zl+1 jl (z)]2}. (19)

Next, for thesphericalBessel functionyn(z) of thesecondkind, defined by
(Abramowitz and Stegun (1968, p. 437)

yn(z) :=
√
π

2z
Yn+ 1

2
(z) n ∈ Z (20)

in terms of the Bessel functionYν(z) of the second kind:

Yν(z) := Jν(z) cos(νπ )− J−ν(z)

sin(πν)
, (21)

it is not difficult to observe that (Abramowitz and Stegun, 1968, p. 439, Entry
10.1.39)

yn(z) = (−1)n+1

√
π

2z
J−n− 1

2
(z) = (−1)n+1 j−n−1(z) n ∈ Z (22)

and that (Abramowitz and Stegun, 1968, p. 439, Entry 10.1.26)

yl (z) = −zl

(
−1

z

d

dz

)l {cosz

z

}
l ∈ N0. (23)
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Thus, by making use of the limit formula (Srivastava and Manocha, 1984, p. 326,
Equation 6.5 (13)):

lim
r→−1

 1

0(γ )
pFq+1

 α1, . . . , αp;

z

γ , β1, . . . , βq;




=
∏p

j=1(α j )l+1∏q
j=1(β j )l+1

zl+1

(l + 1)!

· pFq+1

 α1+ l + 1, . . . , αq + l + 1;

z

l + 2,β1+ l + 1, . . . , βq + l + 1;

 l ∈ N0, (24)

we can first deduce the following special case of the derivative formula (8) when
λ = −µ− ν:

d

dz

(
d

dz2

)l

{z−µ−ν Jµ(z)Jν(z)}

= 2(−1)l+1z0
[

1
2(µ+ ν + 1)+ l + 1

]
0
[

1
2(µ+ ν)+ l + 2

]
√
π0(µ+ l + 2)0(ν + l + 2)0(µ+ ν + l + 2)

· 2F3


1
2(µ+ ν + 1)+ l + 1, 1

2(µ+ ν)+ l + 2;

−z2

µ+ l + 2, ν + l + 2,µ+ ν + l + 2;

 , (25)

which, forµ = ν, yields

d

dz

(
d

dz2

)l

{z−2ν [ Jν(z)]2}

= 2(−1)l+1z0
(
ν + l + 3

2

)
√
π0(ν + l + 2)0(2ν + l + 2)

· 1F2

(
ν + l + 3

2
; ν + l + 2, 2ν + l + 2;−z2

)
. (26)

In light of the limit formula (24) once again, we find from (26) withν =
−l − 1

2(l ∈ N0) that

d

dz

(
d

dz2

)l {
z2l+1

[
J−l− 1

2
(z)
]2} = −2zl+ 1

2√
π

Jl+ 1
2
(2z), (27)
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which leads us at once to the following counterpart of the derivative formula (12)
for the spherical Bessel functionyn(z) of the second kind:

d

dz

(
d

dz2

)l

{[zl+1yl (z)]2} = −2zl+1 jl (2z). (28)

By combining the derivative formulas (12) and (28), we have the fascinating
differential equation:

d

dz

(
d

dz2

)l

{[zl+1 jl (z)]2+ [zl+1yl (z)]2} = 0, (29)

that is, (
d

dz2

)l

{[zl+1 jl (z)]2+ [zl+1yl (z)]2} = C, (30)

whereC is a constant of integration.
Yet another remarkable derivative formula involving the spherical Bessel

function of the first as well as the second kind would follow readily from (8) when
we set

λ = 2l + 1 and µ = −ν = l + 1

2
l ∈ N0.

We thus obtain

d

dz

(
d

dz2

)l {
z2l+1Jl+ 1

2
(z)J−l− 1

2
(z)
} = 2zl+ 1

2√
π

J−l− 1
2
(z) (31)

or, equivalently,

d

dz

(
d

dz2

)l

{z2l+2 jl (z)yl (z)} = 2zl+1yl (2z). (32)

We now show that our derivative formula (12) has an interesting application in
an inversion problem occurring in quantum mechanical scattering theory. Indeed
we consider the partial-wave Born approximation (Merzbacher, 1970, p. 244):

tan[δl (κ)] = −2Mκ

h2

∫ ∞
0

Vl (r )[ jl (κr )]2 r 2 dr (33)

associated with the scattering energy

E = κ2h2

2M
, (34)

whereM denotes the mass of the scattered particle,Vl (r ) is the scattering potential
in the channell , andδl (k) is the resulting phase shift. Now, with the help of the
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derivative formula (12), we can rewrite (33) as follows:

− h2

4Mκ l+1

d

dκ

(
d

dκ2

)l

{κ2l+1 tan[δl (κ)]} =
∫ ∞

0
r l+2Vl (r ) jl (2κr ) dr, (35)

which, in view of the Hankel inversion theorem (see, for example, Sneddon, 1972,
p. 299 et seq.), yields the following explicit evaluation of the scattering potential
Vl (r ):

r l Vl (r ) = − 4h2

Mπ

∫ ∞
0

1

κ l−1

[
d

dκ

(
d

dκ2

)l

{κ2l+1 tan[δl (κ)]}
]

jl (2κr ) dκ. (36)

Alternatively, the inversion problem in (35) can be solved by appealing to the
Hankel transform result (Jackson, 1975, p. 110, Equation (3.112)):

2

π

∫ ∞
0

(ax)2 jl (ax) jl (bx) dx = δ(a− b), (37)

which is a limit case of the relatively more familiar integral formula (cf. Sneddon,
1972, p. 314, Equation (5-5-3); see also Abramowitz and Stegun, 1968, p. 487,
Entry 11.4.41):∫ ∞

0
x1−µ+ν Jµ(ax)Jν(bx) dx = bν

aµ0(µ− ν)

(
a2− b2

2

)µ−ν−1

H (a− b) (38)

(a > 0;b > 0;R(µ) > R(ν) > −1)

whenµ→ ν, δ(t) andH (t) being the Dirac delta function and the Heaviside unit
function, respectively.

In particular, forl = 1, (36) yields

rV1(r ) = − 4h2

Mπ

∫ ∞
0

[
d

dκ

(
d

dκ2

)
{κ3 tan[δ1(κ)]}

]
j1(2κr ) dκ, (39)

and so on.
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